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PREPRINT SERIES OF THE

OCTAV MAYER INSTITUTE OF MATHEMATICS

ON THE PARABOLIC REGULARITY, SOBOLEV
EMBEDDINGS AND GLOBAL CARLEMAN

ESTIMATES IN Lq(Lp) SPACES
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ON THE PARABOLIC REGULARITY, SOBOLEV

EMBEDDINGS AND GLOBAL CARLEMAN ESTIMATES

IN Lq(Lp) SPACES

CĂTĂLIN-GEORGE LEFTER AND ELENA-ALEXANDRA MELNIG

Abstract. In this paper we discuss some aspects related to regular-
ity in parabolic problems with corollaries regarding anisotropic Sobolev
embeddings. We use these results in the context of bootstrap argu-
ments applied to global Carleman estimates for nonhomogeneous par-
abolic equations in Lqt (L

p
x) spaces, estimates which are fundamental in

associated control and inverse problems.
The arguments we use are characterizations of regularity in terms of

domains of fractional powers of elliptic operators and then characteri-
zation of these domains as interpolation spaces and relations to Bessel
potential and Sobolev-Slobodeckii spaces.

1. Introduction

Let Ω ⊂ Rn, n ≥ 2, be a bounded domain with smooth boundary ∂Ω and
denote by Q = Ω×]0, T [. We consider parabolic problems of the form

(1.1)

 Dty(t, x) + Ly(t, x) = f(t, x) t ∈]0, T [, x ∈ Ω,
y(t, x) = 0 t ∈]0, T [, x ∈ ∂Ω,
y(0, x) = y0(x) x ∈ Ω,

where L is an uniformly elliptic operator of the form

(1.2) Ly = −
n∑

j,k=1

Dj(ajkDky) +

n∑
k=1

bkDky + cy.

The coefficients satisfy the regularity assumptions ajk ∈ W 1,∞(Ω), bk, c ∈
L∞(Ω) and those in principal part satisfy for some µ > 0 the ellipticity
condition

(1.3)

n∑
j,k=1

ajk(x)ξjξk ≥ µ|ξ|2, ∀ξ ∈ Rn, x ∈ Ω.

2010 Mathematics Subject Classification. 35K10, 35K90, 35B69, 46E35, 47A57, 93B07.
Key words and phrases. Parabolic regularity, Anisotropic Sobolev embeddings, Inter-

polation theory, Carleman estimates.
E.A. Melnig was supported by a grant of the Ministery of Research and Innovation,

CNCS - UEFISCDI, project number PN-III-P4-ID-PCE-2016-0011.

1



2 C.G. LEFTER AND E.A. MELNIG

Other boundary conditions which are naturally associated to operator L
may also be considered in order to study the problem in an abstract form
as

(1.4) y′(t) +Ay(t) = f(t), y(0) = y0,

where −A is generator of an analytic semigroup S(t) = e−tA, in a Banach
space X, f ∈ Lq(X) := Lq(0, T ;X), y0 ∈ X. The mild solution is written
in the form

(1.5) y(t) = e−tAy0 +

∫ t

0
e−(t−s)Af(s)ds = S(t)y0 + [S ∗ f ](t).

The classical reference for existence and regularity of solutions to parabolic
problems with f ∈ Lp(Q) = Lp(Lp(Ω)) is the monograph by O.A.Ladyzens-
kaja, V.A.Solonnikov, N.N.Uralceva [20], where maximal regularity is ob-

tained in the anisotropic Sobolev spacesW 2,1
p (Q). The regularity of solutions

to abstract parabolic problems (1.4) by using the representation (1.5) and es-
timates in real interpolation spaces, was considered in the paper of Gabriella
Di Blasio [13]; there, for f ∈ Lq(X) one obtains S∗f ∈W θ,q(X), θ ∈]0, 1[ and
S ∗ f ∈ Lq(DA(θ, p)), θ ∈]0, 1[ (here DA(θ, p) = (X,D(A))θ,p and W θ,q(X)
is a vector valued Sobolev-Slobodeckii space).

The existence and maximal regularity in concrete parabolic problems with
X = Lp(Ω) is established by W.von Wahl in [34], where estimates for S ∗f ∈
Lq(D(A)), Dt(S ∗f) ∈ Lq(X) in terms of norm of f ∈ Lq(Lp(Ω)) with q, p >
1 are obtained by applying a refined study of A.Benedek, A.P.Calderón,
R.Panzone [7] on the convolution of operators, using ideas from the theory
of singular integrals.

When dealing with parabolic problems with nonhomogeneous boundary
conditions, a study of maximal regularity in Lq(Lp) spaces was established
by P.Weidemaier [35, 36].

Maximal regularity in Lq(X) for abstract parabolic problem (1.4) is deeply
related to the geometry of X and properties of operator A. More precisely, if
X is UMD space (a space with unconditional martingale difference property
or, equivalently, a space having the property that the vector valued Hilbert
transform is bounded in Lq(X)) and A is sectorial with bounded imaginary
powers, A ∈ BIP (X, θ), with spectral angle θ < π

2 , then equation (1.4) has

maximal regularity property: y ∈W 1,q(X)∩Lq(D(A)). We refer here to the
monograph of C.Martinez Carracedo, M. Sanz Alix [23], Chapter 8 and the
references therein. An essential ingredient in the approach of such problems
is a theorem of G.Dore and A.Venni characterizing invertibility of sums of
operators in BIP class.

The BIP class is important in our presentation of parabolic regularity; it
allows to characterize the domains of powers of positive operators defined
by elliptic operators with boundary conditions, as complex interpolation
spaces. In such situation these are closed subspaces of Bessel potential
spaces (this important result is due to R.T.Seeley [29]). Then, by using
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an argument based on extension operators one may relate these spaces to
Sobolev-Slobodeckii spaces. Another ingredient we use in studying regular-
ity is represented by convolution estimates in Lr(D(Aγ)), by using estimates
which are specific to analytic semigroups, in domains of fractional powers of
the generating operator.

As we are interested in Lp realizations of elliptic operators in bounded
domains, we mention that the boundedness of imaginary powers of such
operators was proved by R.T.Seeley in [31] by using a representation of the
resolvent and the theory of pseudodifferential operators ([30, 28]). A more
direct approach to such results was given by J.Prüss and H.Sohr in [26]
(see also Th. 12.1.12 in [23]). We also mention here the paper by R.Denk,
G.Dore, M.Hieber, J.Prüss, A.Venni[12] for a study of elliptic operators with
Hölder coefficients in principal part, in connection to the H∞ calculus and
the BIP property.

The parabolic regularity we present may be derived from existing theory
in the cited literature and we chose to present it in a more concentrated
appearance, which is useful for studying regularity in nonlinear parabolic
problems, through bootstrap arguments, when the nonlinearity depends on y
and Dy. The parabolic regularity results are then used to present alternative
proofs to classical embeddings for anisotropic Sobolev spaces and we also
use this approach to Sobolev embeddings of W 2,1

p,q (Q) spaces.
Concernig classical Gagliardo-Nirenberg inequalities for Sobolev-Slobo-

deckii spaces, in the most general framework, we refer to the papers of
H.Brezis and P.Mironescu [9],[10]. We discuss Gagliardo-Nirenberg type
inequalities for anisotropic Sobolev spaces.

Global Carleman inequalities in L2 for parabolic problems were estab-
lished by O.Yu.Imanuvilov in the context of controllability problems when
the control is supported in a subdomain. We refer to the work of A.V.Fursikov
and O.Yu.Imanuvilov[17] and the monograph of V.Barbu [6]; see also the
paper of E.Fernandez-Cara, E.Zuazua [16] where the cost of approximate
controllability is estimated through a careful analysis of the Carleman in-
equalities and the constants there involved. Global parabolic Carleman es-
timates in Lq, q ≤ 2 for homogeneous parabolic equations, in the context of
control and observability, were considered by V.Barbu [5].

These estimates found applications to the stability estimates in inverse
parabolic problems. We refer to the work of O.Yu.Imanuvilov and M.Yama-
moto [19] for L2 stability. The Lq Carleman estimates in the framework of
inverse problems were studied by E.A.Melnig in [24]. This motivates us to
apply our regularity arguments to establish global Carleman parabolic esti-
mates in Lq(Lp), q, p > 2 spaces, for nonhomogeneous parabolic equations.

2. Function spaces and Sobolev embeddings

Interpolation. Consider two Banach spaces E0, E1 with contionuous and
dense embedding E1 ⊂ E0. For θ ∈]0, 1[ denote by [E0, E1]θ the complex



4 C.G. LEFTER AND E.A. MELNIG

interpolation space of order θ. If p ∈]1,∞[, denote by (E0, E1)θ,p the real
interpolation space. When E0, E1 are Hilbert spaces, [E0, E1]θ = (E0, E1)θ,2.

If F0, F1 are another two Banach spaces with contionuous and dense em-
bedding F1 ⊂ F0 and T ∈ L(E0, F0) and T ∈ L(E1, F1) then the Riesz-
Thorin-Marcinkiewicz theorem states that T ∈ L([E0, E1]θ, [F0, F1]θ) with
convex inequality

‖T‖L([E0,E1]θ,[F0,F1]θ) ≤ ‖T‖1−θL(E0,F0)‖T‖
θ
L(E1,F1).

Spaces of functions. Let Ω ⊂ Rn be a bounded domain with smooth bound-
ary. The classical Sobolev spaces of integer order k and for p ∈ [1,∞[ are

(2.1) W k,p(Ω) = {f ∈ Lp(Ω) : Dβf ∈ Lp(Ω), for |β| ≤ k},

where β = (β1, . . . , βn) is a multi-index, |β| = β1 + · · ·βn, and the associated
norm is the canonical one.

For a given s ∈]0, 1[ and p ∈ [1,∞[ the Sobolev-Slobodeckii space (or
fractional Sobolev space) is defined by
(2.2)

W s,p(Ω) =

{
f ∈ Lp(Ω) : ‖f‖Lp +

(∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|n+sp
dxdy

)1/p

<∞

}
,

with the norm ‖f‖W s,p(Ω) the finite quantity above. For s > 1 not an integer

the space W s,p(Ω) is defined as the space of functions f ∈ W [s],p(Ω) such

that Dβf ∈ W s−[s],p(Ω) for all multi-index β with |β| = [s] and is endowed
with the natural norm.

For the fractional Sobolev spaces W s,p(Ω), with s ∈]0, 1[ and p ∈]1,∞[,
one has a characterization by real interpolation (see [33], p.317):

(2.3) W s,p(Ω) = (Lp(Ω),W 1,p(Ω))s,p.

The Bessel potential spaces for s > 0, p ∈ [1,∞[ are defined using the
Fourier transform F as
(2.4)

Hs,p(Rn) = {f ∈ Lp(Rn) : ‖f‖Hs,p = ‖F−1[(1 + |x|2)s/2Ff ]‖Lp <∞}.

For s = k ∈ N and p ∈]1,∞[ one has

Hk,p(Rn) = W k,p(Rn).

If p = 2 this is an immediate consequence of properties of the Fourier trans-
form. However, in the case p 6= 2 this is a deep result and the proof relies
on a study of the Bessel potential using the theory of singular integrals (see
[32], Theorem 3,p.135).

The Bessel potential spaces behave well under complex interpolation,
defining a complete scale of spaces (see [33], p.185): if s = θs2 + (1 − θ)s1

for some θ ∈]0, 1[ then

(2.5) Hs,p(Rn) = [Hs1,p(Rn), Hs2,p(Rn)]θ.
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One defines Hs,p(Ω) as the space of restrictions to Ω of functions in Hs,p(Rn)
with ‖f‖Hs,p(Ω) = inf{‖g‖Hs,p(Rn) : g|Ω = f}.

Consider also for k ∈ N, Ck(Ω) to be the space of functions f : Ω→ R for
which Dβf is bounded and uniformly continuous on Ω, for 0 ≤ |β| ≤ k. For
0 < α < 1, the Hölder space Ck,α(Ω) is the subspace of Ck(Ω) of functions
f for which

sup
x,y∈Ω,x 6=y

|Dβf(x)−Dβf(y)|
|x− y|α

< +∞.

Ck,α(Ω) is a Banach space with the norm
(2.6)

‖f‖Ck,α(Ω) := max
0≤|β|≤k

sup
x∈Ω
|Dβf(x)|+ max

0≤|β|≤k
sup

x,y∈Ω,x 6=y

|Dβf(x)−Dβf(y)|
|x− y|β

.

We will also consider anisotropic Hölder spaces in Q, Cα,
α
2 (Q), with α not

integer. For 0 < α < 1, this is the space of continuous functions g : Q→ R
having the property that t → g(t, x) is in C0,α

2 ([0, T ]) for all x ∈ Ω, with
uniformly bounded norm with respect to x ∈ Ω, and x → g(t, x) belongs
to C0,α(Ω) for all t ∈ [0, T ], with uniformly bounded norm with respect to
t ∈ [0, T ]. It is a Banach space with the norm

(2.7) ‖g‖
Cα,

α
2 (Q)

:= sup
(t,x)∈Q

|g(t, x)|+ sup
(t,x)6=(s,y)∈Q

|g(t, x)− g(t, y)|
(|x− y|2 + |t− s|)

α
2

For noninteger α > 1 we refer to [20] for the definition of Cα,
α
2 (Q).

In the present paper we will use the classical results on embeddings of
Bessel potential and Sobolev spaces into Lebesgue and Hölder spaces (see
e.g. [1],[8],[3],[33]) which state that

Theorem 2.1. For 0 < s and 1 < p < ∞ the following continuous embed-
dings hold:

W s,p(Ω), Hs,p(Ω) ⊂


Lp̃(Ω), p̃ = np

n−sp if sp < n,

Lp̃(Ω), p̃ ∈ [p,∞[ if sp = n,
Cr,α(Ω), α ∈]0, 1[, r ∈ N, r + α = s− n

p if sp > n.

Let (X, ‖ · ‖) be a Banach space. One defines the vector valued Lebesgue
spaces, Sobolev spaces and Hölder spaces in analogy to the corrsponding
scalar cases (by replacing | · | with ‖ ·‖ when this is applied to functions) and
we denote by Lq(X) := Lq(0, T ;X),W s,q(X) := W s,q(0, T ;X), Ck,α(X) =
Ck,α([0, T ];X).

We will be particularly interested in the case X = Lp(Ω) for some p ∈
]1,∞[. In estimates in the last section we will denote, for simplicity, by
Lq(Lp) the space Lq(Lp(Ω)).

One defines the anisotropic Sobolev spaces as:

(2.8) W 2,1
p (Q) = W 1,p(Lp(Ω)) ∩ Lp(W 2,p(Ω)).
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For the study of parabolic problems in these spaces, we refer to the clas-
sical monograph [20]. We give here a simplified version of Lemma 3.3 from
the cited reference, which states corresponding Sobolev embeddings:

Theorem 2.2. Consider u ∈W 2,1
p (Q), p ∈]1,∞[. Then u ∈ Z1, with

Z1 =


Lr(Q) with r = (n+2)p

n+2−2p when p < n+2
2

Lr(Q) with r ∈ [p,∞[, when p = n+2
2

Cα,α/2(Q) with 0 < α < 2− n+2
p , when p > n+2

2

and there exists C = C(Q, p, n) such that

‖u‖Z1 ≤ C‖u‖W 2,1
p (Q)

.

Moreover, Du ∈ Z2 with

Z2 =


Lr1(Q) with r1 = (n+2)p

n+2−p when p < n+ 2

Lr1(Q) with r1 ∈ [p,∞[, when p = n+ 2

Cα,α/2(Q) with 0 < α < 1− n+2
p , when p > n+ 2

and there exists C = C(Q, p, n) such that

‖Du‖Z2 ≤ C‖u‖W 2,1
p (Q)

.

For p, q ∈ [1,∞[ consider the spaces (see [35, 36]):

W 2,1
p,q (Q) = Lq(W 2,p(Ω)) ∩W 1,q(Lp(Ω)).

One of the main results in the paper is about Sobolev type embeddings for
W 2,1
p,q (Q), and the approach will rely on the regularity of flows generated by

analytic semigroups.

3. Operators, semigroups and parabolic regularity

We recall a number of classical notions and results from the Theory of
operator semigroups, for which we refer e.g. to [25, 22]. We also discuss
convolution estimates between operator valued and vector valued functions.

Analytic semigroups. Let X be a Banach space and A : D(A) ⊂ X → X be
a positive operator such that −A is the generator of an analytic semigroup
on X. This is equivalent to the existence of some δ > 0, π2 > ω > 0 such
that

σ(A) ⊂ Vδ,ω := {λ ∈ C : | arg(λ− δ)| < ω}
and for some constant M > 0 and λ ∈ C \ Vδ,ω one has the estimate for the
resolvent R(λ,A) = (λI −A)−1:

‖R(λ,A)‖ ≤ M

1 + |λ|
.

Denoting by S(t) = e−tA the semigroup generated by −A one may consider
the linear nonhomogeneous Cauchy problem in X, (1.4), whose mild solution
is given by (1.5).
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Powers of operators and domains. The fractional powers of A are defined
for α ∈ C, Reα < 0 as:

Aα =
1

2π

∫
γr,θ

λαR(λ,A)dλ,

where γr,θ = {reiθ : r ≥ 0} ∪ {re−iθ : r ≥ 0} oriented from ∞eiθ to ∞e−iθ
and ω < θ < π. For Reα ∈]− 1, 0[ this formula may be put in the form:

Aαx = −sin(πα)

π

∫ ∞
0

λα(λI +A)−1xdλ.

For α, β with negative real part one has Aα+β = AαAβ. For Reα < −n one
has RangeAα ⊂ D(An) and AnAα = An+α. This motivates the definition of
the powers for 0 ≤ Reα < n, n ∈ N as

D(Aα) = {x ∈ X : Aα−nx ∈ D(An)}, Aαx = AnAα−nx.

We note here that a fundamental property, characterising the norm in
domains of fractional powers of the trajectories, of the semigroup generated
by −A is that (see [25], Th.6.13) for α ∈]0, 1], there exists M = M(α) such
that on ]0, T ] one has for all x ∈ X:

(3.1) ‖AαS(t)x‖ ≤Mt−α‖x‖.

We are interested in our paper on characterisations of domains of frac-
tional powers of positive operators, generating analytic semigroups, as above,
and we have (see [33] Th.1.15.3, [22] Th.4.2.6, [23] Th.11.6.1):

Theorem 3.1. If A is a densely defined positive operator, such that Ait ∈
L(X), t ∈ R, then for 0 ≤ Reα < Reβ one has

(3.2) [D(Aα), D(Aβ)]θ = D(A(1−θ)α+θβ).

A more direct approach to the characterisation of Lp realizations of elliptic
operators as belonging to theBIP class comes through transference methods
(see [11]) and we mention in this respect the following theorem (see [22],
Th.4.2.4):

Theorem 3.2. Let (Ω, µ) be a σ−finite measure space and let p ∈]1,∞[.
Suppose A is a positive operator in Lp(Ω, µ) such that for λ > 0, ‖(λI +
A)−1‖ < 1

λ and (λI + A)−1 has the property that (λI + A)−1f ≥ 0 in Ω,
whenever f ∈ Lp(Ω, µ) and f ≥ 0 in Ω. Then A has bounded imaginary
powers in Lp(Ω, µ).

We consider now an uniformly elliptic operator in the form (1.2) with
the assumed regularity for coefficients and ellipticity conditions. The Lp

realization for some p ∈]1,∞[, with homogeneous Dirichlet boundary condi-
tions for L takes into account the Lp regularity theory for elliptic equations
(see [18]) and is defined as A = Ap : D(A) = W 2,p(Ω) ∩ W 1,p

0 (Ω) with
Au = Lu, u ∈ D(A).
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Without loss of generality concerning regularity we may suppose that L
is positive. In fact there always exists λ0 > 0 such that L+ λ0I is positive.
Moreover, one knows that −A generates an analytic semigroup in Lp.

Maximum principle applied to elliptic operator L shows that (λI+A)−1 is
positivity preserving and by Theorem 3.2 we find that A = Ap has bounded
imaginary powers. We have thus:

Theorem 3.3. The operator A = Ap with p ∈]1,∞[, which is the Lp real-
ization of elliptic operator L with homogeneous boundary conditions on ∂Ω,
has the property that, for γ ∈]0, 1[,

D(Aγ) = [Lp(Ω),W 2,p(Ω) ∩W 1,p
0 (Ω)]γ .

The characterization of complex interpolation spaces between domains
of operators with boundary conditions is studied in [29]. The result in
our case of Dirichlet homogeneous boundary conditions tells basically that
[Lp(Ω),W 2,p ∩ W 1,p

0 (Ω)]γ coincides with H2γ,p(Ω) for 2γp < 1 and is the
closed subspace of H2γ,p(Ω) containing functions with null boundary con-
ditions when 2γp ≥ 1 (in the case 2γp = 1 the trace is understood in a
generalized sense). Relation between domains of fractional powers of oper-
ator A and Sobolev-Slobodeckii spaces is given in the next proposition:

Proposition 3.4. Consider γ ∈]0, 1[. Then, if p ≥ 2, one has the continu-
ous inclusion

D(Aγ) ⊂ H2γ,p(Ω) ⊂W 2γ,p(Ω).

If 1 < p < 2 and γ′ < γ,

D(Aγ) ⊂ H2γ,p(Ω) ⊂W 2γ′,p(Ω).

with continuous inclusion.

Proof. Consider a linear continuous extension operator

E : W 1,p
0 (Ω) ∩W 2,p(Ω) + Lp(Ω)→W 2,p(Rn) + Lp(Rn).

By Riesz-Thorin-Marcinkiewicz we have that E is continuous between in-
terpolated spaces

E ∈ L([X,D(A)]γ , [L
p(Rn), H2,p(Rn)]γ)

Observe that, if p ≥ 2, one has by Theorem 5, p.155 in [32]

H2γ,p(Rn) = [Lp(Rn), H2,p(Rn)]γ ⊂W 2γ,p(Rn).

By the same theorem in [32], if 1 < p < 2

H2γ,p(Rn) = [Lp(Rn), H2,p(Rn)]γ ⊂ B2γ
p,2(Rn) =

= (Lp(Rn),W 2,p(Rn))γ,2 ⊂ (Lp(Rn),W 2,p(Rn))γ′,p = W 2γ′,p(Rn).

Here B2γ
p,2 is a Besov space (see [33]). On the other hand,

D(Aγ) = [X,D(A)]γ .
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Suppose first that p ≥ 2 and u ∈ D(Aγ); we have

‖u‖D(Aγ) ≥ C‖Eu‖[Lp,H2,p]γ ≥ C‖Eu‖W 2γ,p(Rn) ≥ C‖u‖W 2γ,p(Ω).

If 1 < p ≤ 2 and u ∈ D(Aγ) and 0 < γ′ < γ, we have by a similar argument

‖u‖D(Aγ) ≥ C‖Eu‖[Lp,H2,p]γ ≥ C‖Eu‖W 2γ′,p(Rn) ≥ C‖u‖W 2γ′,p(Ω).

Last inequalities above follow from the fact that Sobolev-Slobodeckii norm
is in integral form and restricting the respective integrals to Ω will decrease
the value of the integral. �

Convolution estimates. When searching for various types of solutions (clas-
sical, strong, weak) one needs to study convolutions between operator valued
functions and vector valued functions.

Besides the spaces Lq(X), we also consider the space Lqw(X) = Lqw(0, T ;X)
for q > 1, which is defined, analogously to the scalar case, as the space of
measurable functions h : [0, T ]→ X such that

(3.3) ‖h‖Lqw(X) := sup
λ>0

λµ({t ∈ [0, T ] : ‖h(t)‖X ≥ λ})
1
q <∞.

We may formulate the following result on convolutions of operator valued
with vector valued functions, analogously to the scalar case:

Lemma 3.5. Let X,Y be two Banach spaces and p, q, r ∈ [1,∞] such that
1 + 1

r = 1
p + 1

q . Consider S ∈ Lp(0, T ;L(X,Y )) and f ∈ Lq(0, T ;X) Then

S ∗ f defined by [S ∗ f ](t) =
∫ t

0 S(t− s)f(s)ds belongs to Lr(0, T ;Y ) and

(3.4) ‖S ∗ f‖Lr(Y ) ≤ ‖S‖Lp(L(X,Y ))‖f‖Lq(X).

Moreover, if p, q, r ∈]1,∞[ and S ∈ Lpw(L(X,Y )), then [S ∗ f ](t) =
∫ t

0 S(t−
s)f(s)ds belongs to Lr(0, T ;Y ) and there exists C = C(p, q) such that

(3.5) ‖S ∗ f‖Lr(Y ) ≤ C‖S‖Lpw(L(X,Y ))‖f‖Lq(X).

Proof. The proof of this result follows easily from the result in the scalar

case. Since ‖[S ∗ f ](t)‖Y ≤
∫ t

0 ‖S(t− s)‖L(X,Y )‖f(s)‖Xds, we may apply the
convolution estimates for scalar functions ‖S(·)‖L(X,Y ) and ‖f(·)‖, for which
we refer to Lemma 1.4 respectively to Theorem 1.5 in [4]. �

Regularity for parabolic problems. Consider X = Lp(Ω) and the parabolic
problem with homogeneous initial data:

(3.6) y′ +Ay = f, y(0) = 0, t ∈]0, T [

with A the Lp realization of parabolic operator L with Dirichlet boundary
conditions. It turns out that D(A) = W 2,p ∩W 1,p

0 (Ω). The mild solution is
given by

(3.7) y(t) =

∫ t

0
e−(t−s)Af(s)ds.
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Our purpose is to obtain regularity in Lr(D(Aγ)) and, subsequently, relat-
ingD(Aγ) to Bessel potential and Sobolev-Slobodeckii spaces, in Lr(Hs,p(Ω))
and Lr(W s,p(Ω)), for some s > 0, r > 1.

Spatial regularity.

Theorem 3.6. Let A be a positive operator with −A generator of an analytic
semigroup, q ∈]1,∞[ and f ∈ Lq(X). Consider γ ∈ [ q−1

q , 1[. With r ∈]q,∞]

such that 1 + 1
r = 1

q + γ, we have y ∈ Lr(D(Aγ)) (for γ = q−1
q we have

y ∈ L∞(D(A
q−1
q ))). Moreover, for some constant C = C(γ, q)

(3.8) ‖y‖Lr(D(Aγ)) ≤ C‖f‖Lq(X).

If for some σ ∈]0, 1[ we have f ∈ Lq(D(Aσ)), then for σ + q−1
q ≤ γ < 1 + σ

and r given by 1 + 1
r = 1

q + γ − σ one has y ∈ Lr(D(Aγ)). Moreover, for

r, γ, σ as above there exists C = C(σ, γ, q) such that

(3.9) ‖y‖Lr(D(Aγ)) ≤ C‖f‖Lq(D(Aσ)).

Proof. By Theorem 6.13, [25], p.74 ,

‖AγS(t)‖L(X) ≤
C

tγ

This implies that for 1 ≤ q̃ < 1
γ

‖S(·)‖L(X,D(Aγ)) ∈ Lq̃(0, T ),

and in the limit

‖S(·)‖L(X,D(Aγ)) ∈ L
1
γ
w(0, T ).

Then, by convolution estimates we have:

‖y‖Lr(D(Aγ)) ≤ C‖S(·)‖
L

1
γ
w (L(X,D(Aγ))

‖f‖Lq(X) ≤ C‖f‖Lq(X).

The case f ∈ Lq(D(Aσ)) may be treated in the same way by using con-
volution estimates and taking into account that, for γ > σ, there exists
C = C(σ, γ) such that

‖AγS(t)x‖L(X) ≤
C

tγ−σ
‖Aσx‖, x ∈ D(Aσ),

which gives that for σ + q−1
q ≤ γ < 1 + σ one has

S ∈ L
1

γ−σ
w (L(D(Aσ), D(Aγ)))

and (3.9) follows as above.
�
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Temporal regularity. The next result is probably known but we did not find
the appropriate reference. It is a generalization of Th.3.1,Ch.4 in [25], with
similar ideea of proof, and gives regularity in spaces C0,α(D(Aγ)) for appro-
priate α, γ ∈]0, 1[.

Theorem 3.7. For f ∈ Lq(X), q ∈]1,∞[, the mild solution y = S ∗ f given

by (3.7) belongs to the spaces C
0, q−1

q
−γ

(D(Aγ)), γ ∈]0, q−1
q [, and there exists

C = C(q, γ) such that the following estimate holds

‖S ∗ f‖
C

0,
q−1
q −γ(D(Aγ))

≤ C‖f‖Lq(X).

Proof. First, observe that ‖AγS(t)x‖X ≤ C 1
tγ ‖x‖X and 1

tγ ∈ L
q′(0, T ), q′ =

q
q−1 , as q′γ < 1. From Lemma 3.5 we have a first estimate

(3.10) ‖S ∗ f‖L∞(D(Aγ)) ≤ C‖f‖Lq(X).

In order to prove Hölder continuity, we need now the following classical es-
timate for the analytic semigroup generated by −A (see [25], Th.6.13,Ch.2):

‖S(t)x− x‖X ≤ C(α)tα‖Aαx‖X , x ∈ D(Aα), α ∈]0, 1],

which has as consequence,

‖AγS(t+ h)x−AγS(t)x‖X ≤ C(α, γ)
hα

tα+γ
‖x‖X , 0 < α, γ, α+ γ < 1.

Now we estimate the difference

Aγy(t+ h)−Aγy(t) =

=

∫ t+h

t
AγS(t+h−s)f(s)ds+

∫ t

0
Aγ [S(t+h−s)−S(t−s)]f(s)ds = I1 +I2.

We estimate the two terms:

‖I1‖X ≤
∫ t+h

t
‖AγS(t+ h− s)f(s)‖Xds =

∫ h

0
‖AγS(τ)f(t+ h− τ)‖Xdτ ≤

≤
∫ h

0

1

τγ
‖f(t+ h− τ)‖Xdτ ≤

(∫ h

0
‖f(t+ h− τ)‖qXdτ

) 1
q
(∫ h

0

1

τγq′
dτ

) 1
q′

≤

≤ C‖f‖Lq(X)h
1
q′−γ ,(3.11)

with q′ = q
q−1 and γq′ < 1.
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For I2 we choose α+ γ = 1
q′ and we have

‖I2‖X ≤
∫ t

0
‖Aγ [S(t+ h− s)− S(t− s)]‖L(X,X)‖f(s)‖Xds ≤

≤
∫ t

0
C(α, γ)

hα

(t− s)α+γ
‖f(s)‖Xds ≤

≤ C(α, γ)hα
∥∥∥∥ 1

(·)α+γ
∗ ‖f(·)‖X

∥∥∥∥
L∞(0,T )

≤(3.12)

≤ C(α, γ)hα
∥∥∥∥ 1

(·)α+γ

∥∥∥∥
L

1
α+γ
w (0,T )

‖f‖Lq(X).

Conclusion now follows from (3.11),(3.12) and (3.10).
�

Consequences of spatial regularity. Proposition 3.4 and Theorem 3.6 have
as immediate consequence

Proposition 3.8. Consider q, p ∈]1,∞[ and f ∈ Lq(Lp(Ω)). For r ∈]q,∞]
and θ = 2 + 2

r −
2
q , the mild solution y to (3.6), given by (3.7), satisfies the

regularity estimate:

(3.13) ‖y‖Lr(Hθ,p(Ω))) ≤ C‖f‖Lq(Lp(Ω)),

with a constant C = C(p, q, r).

Moreover, for r1 ∈]q,∞[ if q ≥ 2 and r1 ∈]q, 2q
2−q ] if q ∈]1, 2[, and choosing

θ̃ = 1 + 2
r1
− 2

q , the gradient of the mild solution y satisfies the regularity
estimate:

(3.14) ‖Dy‖
Lr1 (H θ̃,p(Ω))

≤ C̃‖f‖Lq(Lp(Ω)).

with a constant C̃ = C̃(p, q, r1).

Remark 3.9. If we take into account Proposition 3.4, we find for p ≥ 2,
with r ∈]q,∞] and θ = 2 + 2

r −
2
q , the estimate:

‖y‖Lr(W θ,p(Ω)) ≤ C(p, q, r)‖f‖Lq(Lp(Ω)),

while for 1 < p < 2 and θ′ < 2 + 2
r −

2
q one has

‖y‖Lr(W θ′,p(Ω)) ≤ C(p, q, r, θ′)‖f‖Lq(Lp(Ω)).

Moreover, for r1 ∈]q,∞[ if q ≥ 2 and r1 ∈]q, 2q
2−q ] if q ∈]1, 2[, with θ̃ =

1 + 2
r1
− 2

q , when p ≥ 2, one has the estimate

‖Dy‖
Lr1 (W θ̃,p(Ω))

≤ C̃(p, q, r̃)‖f‖Lq(Lp(Ω))

while when p ∈]1, 2[, with θ′ < 1 + 2
r1
− 2

q we have

‖Dy‖Lr1 (W θ′,p(Ω)) ≤ C̃(p, q, r̃)‖f‖Lq(Lp(Ω)).
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Using the Sobolev embeddings for Hs,p(Ω),W s,p(Ω) with s = θ or s = θ̃,
in the framework of Proposition 3.8 and Remark 3.11, we find the following
estimates for the mild solution to (3.6):

Corollary 3.10. With r ∈]q,∞[ and θ = 2 + 2
r −

2
q we have the estimates:

• For θp ≤ n, choosing p̃ ≤ np
n−θp if θp < n and choosing arbitrarily

p̃ ∈ [p,∞[ if θp = n, one has

‖y‖Lr(Lp̃(Ω))) ≤ C(p, q, r, p̃)‖f‖Lq(Lp(Ω));

• If θp > n, then y ∈ Lr(Cr,α(Ω)) with α ∈]0, 1], k ∈ {0, 1}, k + α =
θ − n

p and

‖y‖Lr(Ck,α(Ω))) ≤ C(p, q, r, p̃)‖f‖Lq(Lp(Ω)).

Moreover, for r1 ∈]q,∞[ if q ≥ 2 and r1 ∈]q, 2q
2−q ] if q ∈]1, 2[, denoting by

θ̃ = 1+ 2
r1
− 2
q we have the following estimates for the gradient of the solution:

• For θ̃p ≤ n, choosing p̃1 ≤ np

n−θ̃p if θ̃p < n and choosing arbitrarily

p̃1 ∈ [p,∞[ if θ̃p = n, one has

‖Dy‖Lr1 (Lp̃1 (Ω))) ≤ C(p, q, r1, p̃1)‖f‖Lq(Lp(Ω));

• If θ̃p > n, then y ∈ Lr1(C0,α1(Ω)) with α1 ∈]0, 1[, α1 = θ̃ − n
p and

‖Dy‖Lr1 (C0,α1 (Ω))) ≤ C(p, q, r1, p̃)‖f‖Lq(Lp(Ω)).

Remark 3.11. In the above considerations we studied regularity for solu-
tions to parabolic problems with null boundary conditions and zero initial
data. If we want to recover Sobolev embedding results without imposing
boundary conditions, we proceed as follows. Take Ω̃, some bounded domain
with smooth boundary Ω ⊂⊂ Ω̃ and a continuous extension operator E :
W 2,p(Ω) +Lp(Ω)→W 2,p ∩W 1,p

0 (Ω̃) +Lp(Ω̃). For some u ∈W 2,1
p,q (Ω×]0, T [)

we have Eu ∈W 2,1
p,q (Ω̃×]0, T [). Extend now Eu by reflection to Ω̃×]−T, T [.

Denote it by ũ(x, t) = Eu(x,−t), t ∈] − T, T [ and this function belongs

to W 2,1
p,q (Q̃), Q̃ = Ω̃×] − T, T [. Denote by P (D) the parabolic operator

P (D) = Dt −∆ and take a function η ∈ C∞(]− T, T [), η(t) = 0 for t < −T
2

and η(t) = 1 for t > −T
4 . We have

P (D)(ηũ) = ηP (D)ũ+ η′(t)ũ.

If we apply regularity estimates in Lr(Lp̃)in terms of right hand side in
Lq(Lp) (see Proposition 3.8), we find that

‖u‖Lr(Lp̃(Ω)) ≤ C‖ηũ‖Lr(−T,T ;Lp̃(Ω̃)) ≤ C‖P (D)(ηũ)‖Lq(−T,T ;Lp(Ω̃)) ≤

≤ C(‖ũ‖
W 2,1
p,q (Q̃)

+ ‖ũ‖Lq(Lp(Ω̃))) ≤ C1‖u‖W 2,1
p,q (Q)

.
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Remark 3.12. Observe that if u ∈W 2,1
p (Q) with p < (n+2)

2 and considering

the remark above with q = p, we may take r = (n+2)p
n+2−2p . Correspondingly,

θ = 2n
n+2 and θp < n. Observing that p̃ := np

n−θp = r, we find from Corollary

3.10 that

‖u‖
L

(n+2)p
n+2−2p (Q)

≤ C(p)‖u‖
W 2,1
p (Q)

.

Moreover, if p < n + 2 and considering the remark above with q = p, we

may take r1 = (n+2)p
n+2−p . Correspondingly, θ̃ = n

n+2 and θ̃p < n. Observing

that p̃ := np

n−θ̃p = r1, we find from Corollary 3.10 that

‖Du‖
L

(n+2)p
n+2−p (Q)

≤ C(p)‖u‖
W 2,1
p (Q)

.

One may see that we recovered the Sobolev type embedding in Theorem 2.2.

Concerning Sobolev embeddings forW 2,1
p,q (Q) spaces we obtain from Propo-

sition 3.8 and the Remark 3.11 the following result:

Theorem 3.13. Consider u ∈W 2,1
p,q (Q).

Then u ∈ Z1 where

Z1 =


Lr(Lp̃(Ω)), r ∈ [q,∞], p̃ ≤ np

n−(2+ 2
r
− 2
q

)p
, if (2 + 2

r −
2
q )p < n,

Lr(Lp̃(Ω)), r ∈ [q,∞], p̃ ∈ [p,∞[, if (2 + 2
r −

2
q )p = n,

Lr(Ck,α(Ω)), α ∈]0, 1], k ∈ {0, 1}, k + α = 2 + 2
r −

2
q −

n
p ,

if (2 + 2
r −

2
q )p > n

and there exists C = C(p, q, r, p̃), respectively C = C(p, q, r) in the third
case, such that

‖u‖Z1 ≤ C‖u‖W 2,1
p,q (Q)

.

Moreover, Du ∈ Z2 where

Z2 =


Lr1(Lp̃1(Ω)), r1 ∈ [q,∞], p̃1 ≤ np

n−(1+ 2
r1
− 2
q

)p
, if (1 + 2

r1
− 2

q )p < n,

Lr1(Lp̃1(Ω)), r1 ∈ [q,∞], p̃1 ∈ [p,∞[, if (1 + 2
r1
− 2

q )p = n,

Lr1(C0,α(Ω)), α ∈]0, 1], α = 1 + 2
r1
− 2

q −
n
p if (1 + 2

r1
− 2

q )p > n

and there exists C = C(p, q, r1, p̃1), respectively C = C(p, q, r1) in the third
case, such that

‖Du‖Z2 ≤ C‖u‖W 2,1
p,q (Q)

.

Consequences of temporal regularity. An immediate consequence of Theorem
3.7, considering that D(Aγ) ⊂ H2γ,p(Ω), is the following:

Proposition 3.14. Let f ∈ Lq(Lp(Ω)), γ ∈]0, q−1
q [, then the solution y

to (3.6) given by (3.7) belongs to C
0, q−1

q
−γ

(H2γ,p(Ω)) and there exists C =
C(p, q, γ) such that

‖y‖
C

0,
q−1
q −γ(H2γ,p(Ω))

≤ C‖f‖Lq(Lp(Ω)).
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Now, by the previous results, taking into account Remark 3.11 and isotro-
pic Sobolev embedding from Theorem 2.1, we obtain the following Morrey
type result for W 2,1

p,q spaces:

Theorem 3.15. For p, q ∈]1,∞[, suppose there exists γ ∈]0, q−1
q [ with 2γ−

n
p > 0 not an integer. Then the space W 2,1

p,q (Q) is continuously embedded in

C
0, q−1

q
−γ

(Ck,α(Ω)) where k ∈ {0, 1}, α ∈]0, 1[, k + α = 2γ − n
p .

Remark 3.16. Suppose p > nq′ = nq
q−1 and denote by α0 = 1

q′ −
n
p ∈ (0, 1).

Taking first γ = q−1
2q we obtain that W 2,1

p,q (Q) is continuously embedded in

C0,α1(C0,α0(Ω)) with α1 = 1
2q′ . Taking γ = n

p and α2 = γ we find that

W 2,1
p,q (Q) is continuously embedded in C0,α0(C0,α2(Ω)). One may see that

C0,α1(C0,α0(Ω))∩C0,α0(C0,α2(Ω)) is continuously embedded in the space of
Hölder continuous functions C0,α0(Q). This conclusion is in the spirit of the
result established in [27].

Remark 3.17. Theorem 3.15 has as consequence the Morrey type embed-
ding in Theorem 2.2. Indeed, if we take p = q > n+2

2 and α ∈]0, 2 − n+2
p [

not an integer, we find, by choosing γ = α
2 + n

2p and observing that α1 :=
1
p′ − γ > 0, that W 2,1

p (Q) is continuously embedded in C0,α1(C0,α(Ω)).

With the same α, choose γ = 1
p′ −

α
2 . Observe that γ ∈] n2p , p

′[ and

with α2 = 2γ − n
p we find that W 2,1

p (Q) is continuously embedded in

C0,α
2 (C0,α2(Ω)). The intersection of C0,α1(C0,α(Ω)) and C0,α

2 (C0,α2(Ω)) is

continuously embedded in Cα,
α
2 (Q) and we recover the corresponding con-

clusion in Theorem 2.2.

Gagliardo-Nirenberg type inequalities involving anisotropic Sobolev spaces.
One may easily use Theorem 3.13 to obtain interpolation inequalities of
Gagliardo type between spaces W 2,1

p,q (Q) and Lσ(Lτ (Ω)), with p, q, σ, τ ∈
]1,∞[. IfW 2,1

p,q (Q) ⊂ Lr(Lp̃)(Ω) with continuous injections and u ∈W 2,1
p,q (Q)∩

Lσ(Lτ (Ω)), then u ∈ [Lr(Lp̃(Ω)), Lσ(Lτ (Ω))]θ, θ ∈]0, 1[ and satisfies the in-
equality

‖u‖Lσθ (Lτθ (Ω)) ≤ C(θ, p, q, σ, τ)‖u‖1−θ
W 2,1
p,q (Q)

‖u‖θLσ(Lτ (Ω)),

where 1
σθ

= θ
σ + 1−θ

r and 1
τθ

= θ
τ + 1−θ

p̃ .

4. Carleman inequalities in Lq(Lp(Ω)) for q, p ≥ 2

In what follows, we are interested to obtain Carleman estimates in Lq(Lp)
spaces, when q, p ≥ 2.

We recall first the statement of L2 global Carleman estimates:
Let ω ⊂⊂ Ω. One needs (and existence is guaranteed, see [17]) an auxil-

iary function ψ with the following properties:
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ψ0 ∈ C2(Ω), 0 < ψ0 in Ω, ψ0|∂Ω = 0, {x ∈ Ω : |∇ψ0(x)| = 0} ⊂⊂ ω.

Denote by

(4.1) ψ := ψ0 +K,

for a positive constant K > 0 which is fixed such that supψ
inf ψ < δ small enough

(see [16]). Introduce also, for parameters s, λ > 0 the auxiliary functions:

(4.2) ϕ(t, x) :=
eλψ(x)

t(T − t)
, α(t, x) :=

eλψ(x) − e1.5λ‖ψ‖C(Ω)

t(T − t)
.

The choice of K above is needed in order to have uniform estimates with
respect to λ , with C = C(T ):

ϕt ≤ Cϕ2, |αt| ≤ Cϕ2, |αtt| ≤ Cϕ3.

Following the strategy in [17], [16] one obtains in fact a family of Carleman
estimates with general powers for the weight functions ϕ (see [37] and also
[24]):

Lemma 4.1. (Carleman estimates with general weights) Let m ∈ R, then
there exist λ0 = λ0(Ω, ω,m), s0 = s0(Ω, ω,m), C = C(Ω, ω,m) > 0 such
that, for any λ ≥ λ0, s ≥ s0, the following inequality holds:

(4.3)

∫
Q

[(sϕ)m−1λm(|Dty|2 + |D2y|2) + sm+1λm+2ϕm+1|Dy|2]e2sαdxdt

+

∫
Q
sm+3λm+4ϕm+3|y|2e2sαdxdt

≤ C
∫

[0,T ]×ω
sm+3λm+4ϕm+3|y|2e2sαdxdt+

∫
Q
smλmϕmf2e2sαdxdt

for all y ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) solution of (1.1) with f ∈
L2(Q).

Using a bootstrap argument based on the above result and the regularizing
effect of the parabolic flow, we obtain a family of Carleman estimates in
spaces Lq(Lp).

Let us now construct the following sequences: {qj}j∈N, q0 = 2, qj =

q,∀j ∈ N∗ and {pj}j∈N with p0 = 2, p1 = 2nq
nq−4 and for j ≥ 2 we define

inductively

(4.4) pj :=


npj−1

n−
(

1+ 2
qj
− 2
qj−1

)
pj−1

=
npj−1

n−pj−1
, if pj−1 < N,

2pj−1, if pj−1 ≥ N.

The sequence {pj}j∈N is increasing and pj → +∞.
Define p̃j = min{pj , p} and take m the first index such that p̃m = p.

Observe that by Corollary 3.10 (see also the Theorem 3.13 for explicit orders
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of integration), the solutions to parabolic problem (1.1) with null initial
condition (y0 = 0) satisfy for j = 2, . . . ,m the estimate

(4.5) ‖y‖
Lqj (Lp̃j (Ω))

+ ‖Dy‖
Lqj (Lp̃j (Ω))

≤ C(p̃j−1, qj−1))‖f‖
Lqj−1 (Lp̃j−1 (Ω))

.

We define the sequence {kj}j∈N, kj := kj−1−2 with k0 ∈ R and we denote

by wj := ϕkjyesα.
We write now the problem satisfied by the new variables wj , with j = 1,m

using (1.1). By standard computations we find:

• Dt(wj) = O(s)wj−1 + ϕkjDtye
sα

• Dk(wj) = O(sλϕ−1)wj−1 + ϕkjDkye
sα

• Dl(aklDkwj) = O(s2λ2)wj−1+O(sλϕ−1)Dkwj−1+O(sλϕ−1)Dlwj−1+

ϕkjDj(aklDky)esα.

Then, the problem takes form
(4.6)

Dtwj + Lwj = ϕkjfesα +O(s2λ2wj−1) +O(sλDwj−1), in (0, T )× Ω

wj = 0, on (0, T )× ∂Ω,

wj(0, ·) = 0 in Ω.

Since wj satisfies an equation of type (1.1) with wj(0, ·) = 0 in Ω, we have
an inequality of type (4.5)

(4.7)

‖wj‖Lqj (Lp̃j )
+

1

sλ
‖Dwj‖Lqj (Lp̃j )

≤ ‖wj‖Lqj (Lp̃j )
+ ‖Dwj‖Lqj (Lp̃j )

≤

≤ C
[
s2λ2‖wj−1‖Lqj−1 (Lp̃j−1 )

+ sλ‖Dwj−1‖Lqj−1 (Lp̃j−1 )

+‖ϕkj−1fesα‖
Lqj−1 (Lp̃j−1 )

]
.

where, for the first inequality we choose sλ > 1.
By a standard telescopic summation procedure, after multiplying each

equation in (4.7) with (Cs2λ2)m−j respectively and recording that p̃0 =
q0 = 2, p̃m = p, qm = q, we obtain

(4.8)
‖wm‖Lq(Lp) + ‖Dwm‖Lq(Lp) ≤
≤ C

[
s2mλ2m‖w0‖L2(Q) + s2m−1λ2m−1‖Dw0‖L2(Q) + Ek0(f)

]
,

where we denoted by

Ek0(f) =

m∑
j=1

s2(m−j)λ2(m−j)‖ϕkj−1fesα‖
Lqj−1 (Lp̃j−1 )

.
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Now we write w0, Dw0 in terms of y,Dy and we find in the right side of
(4.8) terms involving ϕk0+1yesα, ϕk0Dyesα. Using the L2 Carleman inequal-
ity (4.3), we obtain
(4.9)
‖wm‖Lq(Lp) + ‖Dwm‖Lq(Lp)

≤ C[s2mλ2m‖ϕk0+1yesα‖L2(Qω) + s2m− 3
2λ2m−2‖ϕk0− 1

2 fesα‖L2(Q) + Ek0(f)]

≤ C[s2mλ2m‖ϕk0+1yesα‖L2(Qω) + Ẽk0(f)],

where

Ẽk0(f) = Ek0(f) + s2m− 3
2λ2m−2‖ϕk0− 1

2 fesα‖L2(Q)

≤ Cs2m− 3
2λ2m−2‖ϕk0− 1

2 fesα‖Lq(Lp).

Because Dwm = O(sλϕkm+1ysα) + ϕkmDyesα, we obtain

(4.10)
‖ϕkmyesα‖Lq(Lp) + s−1λ−1‖ϕkm−1Dyesα‖Lq(Lp)

≤C[s2mλ2m‖ϕk0+1yesα‖L2(Qω) + s2m− 3
2λ2m−2‖ϕk0− 1

2 fesα‖Lq(Lp)],

which gives the following theorem

Theorem 4.2. Let f ∈ Lq(Lp(Ω)), p, q ∈ [2,∞[ and k0 ∈ R. Then there ex-
ist m = m(q, p) ∈ N, λ0 = λ0(p, q, k0), s0 = s0(p, q, k0) and C = C(p, q, k0) >
0 such that, for any λ ≥ λ0, s ≥ s0, the following inequality holds:
(4.11)

‖ϕk0−2myesα‖Lq(Lp(Ω)) + s−1λ−1‖ϕk0−2m−1Dyesα‖Lq(Lp(Ω))

≤C[s2mλ2m‖ϕk0+1yesα‖L2(Qω) + s2m− 3
2λ2m−2‖ϕk0− 1

2 fesα‖Lq(Lp(Ω))]

≤C[s2mλ2m‖ϕk0+1yesα‖Lq(Lp(ω)) + s2m− 3
2λ2m−2‖ϕk0− 1

2 fesα‖Lq(Lp(Ω))].

Remark 4.3. The above regularity argument may be further used in order
to have estimates also for D2y and Dty in Lq(Lp) spaces or, if q, p are big
enough, estimates for y in anisotropic Hölder spaces.

Explicit dependence on T of constant C appearing in Carleman inequality
(4.11) may be obtained by using the results in [16]. Indeed, we perform
here only a finite number of boot-strap arguments involving constants from
Sobolev embeddings so, for fixed principal part of operator L, one may write
for the constant in (4.11)

C = exp

[
K(Ω, ω, ‖bk, c‖L∞)

(
1

T
+ T

)]
.

This kind of estimate is useful in nonlinear controllability problems (see
[15],[14]), as well as in unique continuation results at initial time (see [21],
[2]).
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